Entropy and Sustainability (09) My Proposals for Sustainability

2018-08-26

To conclude this book, I would like to present my personal proposal for what we should do to make our civilization sustainable. There are three major problems, namely the restriction of population growth, the maintenance and restoration of vegetation, and the utilization of renewable energy.

image

1 : Birth Control by Education

It is the huge expansion of energy consumption that has brought about the current destruction of the environment and exhaustion risk of the resources. Energy consumption increases after the Industrial Revolution and especially rapidly after the latter half of the 20th century. The amount of energy consumption is the product of multiplying population and energy consumption per capita. Which should we reduce?

Technological innovation can reduce energy consumption per capital to some degree without derogating the quality of life. Technological innovation is also important to minimize the damage of the high-entropy waste that consumption of energy emits to the environment. It goes without saying that innovation of energy and environmental technology is crucial. Technological innovation, however, becomes powerless to reduce total energy consumption, if population continues to increase at the present rate. Population growth has a high correlation with total energy consumption. It has especially grown rapidly after the latter half of the 20th century.

The growth rate of the world population has dropped since its peak of 2.0 percent in 1965-1970 with the declines in fertility.[1] What is the cause of the declines? The total low fertility rate is conspicuous among advanced countries. Among the lowest are East Asian and European countries, where parents are eager for their children’s education. Among the highest are African countries, where parents exploit children as laborers.[2] Generally speaking, many children mean a high cost in advanced countries and a high income in developing countries. That is why the total fertility rate is low in advanced countries and high in developing countries.

In the academic career based advanced society, women tend to marry late because of long-term education and bear fewer children. The negative correlation between education and fertility rate is reported ― “as literacy improves, fertility rates tend to decrease.”[3]

Education can sublimate sexuality up to science and art. The recent research shows that higher intelligence operates as a protective factor against early sexual activity during adolescence.[4] In an advanced society where information industry has developed, people can enjoy various amusements and an interest in real sex tends to wane. People will get interested in multiplying their meme in the virtual world rather than their gene in the real world.

On account of these various factors, the transition from labor-intensive or capital-intensive economy to knowledge-intensive economy. Lester C. Thurow calls this transformation of the economy “the third industrial revolution”.

In the third industrial revolution intellectual property rights are becoming more important as other sources of competitive advantage become less important.[5]

In order to promote the current trend, I propose introducing a Pigovian tax to childbirth. It might sound unpleasant because it is as if bearing a baby is like emission of harmful substance. So, how about a name “upbringing insurance”?

Suppose parents must pay an insurance premium for childbirth, it will reduce the birth rate, because parents have to pay all costs to bring up their children and the government does not offer subsidies. The essence of the Pigovian tax is the internalization of externalities. Even if they get unable to bring up their children, insurance enables the children to receive their enough education. In short, introducing the compulsory insurance has two effects, the reduction in birthrate and the elevation of the academic level of workers.

Although developing countries have produced poor-educated workers, these workers would be redundant in the future because of computerization and automatization. Simple work is no longer the work for humans but for computers and robots. What will be important in the future labor market is not the quantity but the quality of labor.

The upbringing insurance will decrease population in total, but increase excellent engineers, because investment in education per capita increases. As I said at the beginning of this division, what is important to reduce total energy consumption is technological innovation and restriction of population growth. The increase in excellent engineers will promote technological innovation.

Some are afraid that the current decreasing fertility rate and mortality rate will stagnate economy temporarily because the ratio of retiring-age population to working-age population will increase for a while. Here again, the transition to the knowledge-intensive economy can solve the problem. Human physical ability wanes as he or she ages, while aging does not so rapidly weaken human intellectual ability. The knowledge-intensive economy makes older but experienced workers useful.

2 : Organic Agriculture

It is almost needless to say that desertification (soil degradation with little or no vegetation) is undesirable. Plants not only offer us food, fuel, materials for, building, clothing, medicine etc. but also coordinate water and temperature. In order to prevent desertification, we should abandon modern non-sustainable agricultural practices and restart organic agriculture that we used to engage in.

United States Department of Agriculture defines organic agriculture as a “concept and practice of agricultural production that focuses on production without the use of synthetic pesticides[6]”. This definition is insufficient. Organic agriculture should not use any agrochemicals including herbicide and chemical fertilizer. Since it makes the most of useful bacteria such as mycorrhizal fungi, leguminous bacteria etc., crops need only a little manure. We should not manure too much, because excessive manure induces insects and pathogenic germs.

Organic agriculture makes our farming sustainable. Thanks to mycorrhizal fungi, crops can grow without pesticide and herbicide and with little manure and water. Moreover, mycorrhizal fungi absorb and store carbon underground. The New Farm that promotes “organic farming” lays stress on this function. According to the New Farm, organic matter can remain as stable carbon compounds for thousands of years in the ground.

Before forests and grasslands were converted to field agriculture, soil organic matter generally composed 6 to 10% of the soil mass, well over the 1 to 3% levels typical of today’s agricultural field systems. The conversion of natural grasslands and forests around the globe works to elevate atmospheric carbon dioxide levels significantly. Building soil organic matter by better nurturing our forest and agricultural lands can capture this excess atmospheric carbon dioxide, and preserve more natural landscapes.[7]

Another important thing to stop desertification is to reduce livestock farming. Livestock farming is the main cause of desertification. We should eat the meat of aquatic animals instead of terrestrial animals and reduce our excrement to the land so that inorganic nutrients, especially phosphorus, circulate between the land and the sea.

You might be afraid that this change of animal protein source would exhaust marine resources, but the reduction in human population and retrieval of inorganic nutrients can prevent a drain on marine resources. Enriching the resources on the land enriches the resources in the sea.

The Mediterranean Sea used to be rich in marine resources, as is drawn on the wall of the Minoan palace at Knossos. The deforestation and overgrazing enhanced by the Ancient Greek and Roman civilizations deteriorated the land and reduced influx of inorganic nutrients, while they have remained at the bottom of the sea. The modern civilization is doing throughout the world on a large scale what the Greek and the Roman did around the Mediterranean Sea on a small scale in the Ancient.

Another concern about my proposal is the way to reduce human excrement (feces and urine) to a field. You cannot directly apply human excrement. Aerobic fermentation should decompose it into water, carbon dioxide and residual minerals that can be manure. Joseph Jenkins who advocates composting human excrement for agriculture named it “humanure”.[8]

This disposal may appear quite filthy and unsanitary. But mixing human excrement with sawdust at a high temperature (more than 50 degree Celsius) annihilates the pathogenic colon bacilli, parasitic insect eggs and so on and decompose it without emitting an offensive odor. A Japanese company has developed such a toilet named “Bio-Lux”[9]that consumes no water, but the device requires no high technology. Everybody can easily make this dry toilet that produces humanure.

3 : Utilization of Biomass

The main energy source that humans have used as food and fuel is biomass. It means humans depend on low-entropy resources that plants make from solar energy. Here I am using the concept of biomass in a broad sense so that it implies both living and dead biological material. In this case, most of the fossil fuels (coal, petroleum and natural gas) are biomass.

It is needless to say that the energy we consume in our bodies derives from biomass. Some of our food derives from plant and other from animals, but since the resource value of the latter derives from the former, we can say we depend on plants for food.

We have also depended on the plant-derived biomass for fuel. The main fuel has changed from wood to coal, from coal to petroleum, from petroleum to natural gas. Most of the resource value of these fuels come from plants. We have kept the low-entropy structure of our body systems and our economic systems with biomass as a high-temperature source and water as a low-temperature source.

Of course, human civilization has not depended only on photosynthesis of plants. Humans have utilized waterpower or wind power. Even before the Industrial Revolution, we used them through watermills and windmills, but these have never been the main energy source.

Today various technologies to utilize renewable energy such as geothermal power, solar power, tidal power, wave power, wind power and so on, are developed, but these will not be the main source of our energy, because they generate power regardless of human demand. So, the biomass power generators must fill the gap between demand and supply.

Fossil fuels are usually not regarded as renewable energy. This sounds strange. Coal, petroleum, natural gas – all these are now being produced newly and naturally. They will be exhausted because we consume them hundred times faster than they are produced. The same thing applies to living biomass. If we do not decrease the amount of consumption and consume living biomass instead of dead biomass, living biomass will be soon exhausted as well.

People often say, “Biomass energy is carbon neutral, but fossil fuel energy is not.” Strictly speaking, this is not true. Living biomass energy is not necessarily carbon neutral and fossil fuel energy is not necessarily carbon positive. Consumption of living biomass is carbon neutral only so far as emitted carbon and sunk carbon keep the balance. If combustion of biomass, whether it is living or dead, exceeds carbon sink, it will increase carbon dioxide concentration.

There is some reason for the belief that biomass energy is carbon neutral, but fossil fuel energy is not or that biomass energy is renewable, but fossil fuel is not. Only a small fraction of living biomass becomes fossil fuel. The rest is decomposed and releases carbon dioxide. Using living biomass as fuel emits less carbon dioxide than using fossil fuel and it is far easier to renew living biomass than fossil fuel.

Anyway, if we intend to continue sustainable and carbon neutral consumption of biomass, we must reduce the amount of biomass energy consumption to the amount of biomass energy plants can produce. The amount of renewable energy is limited. That is why I emphasized the necessity of reducing world population at the first subsection.

Maybe many people do not agree to such an austere proposal. Some will say, “It is primitive to rely on the natural energy source. We should hurry the development of nuclear fusion energy so that we can get inexhaustible energy source soon…” Even if nuclear fusion energy comes to practical use and solves the energy problems, increasing world population will cause food crisis, because nuclear fusion energy cannot supply energy consumed in our bodies. Even if agricultural technologies keep advancing, global desertification will make food crisis inevitable.

Here we must reflect what on earth our progress is. Human progress consists in qualitative improvement of information systems in science, technology, and culture, not in quantitative enlargement of material systems. Of course, the more babies we bear, the more likely to appear the excellent human resources are, the increase in education investment per capita will keep producing them. In so doing, we should reduce our material civilization to the capacity of the plants.

Now, how should we utilize biomass in the future? The traditional method, namely direct burning, is not desirable, because it emits various pollutants such as nitrogen oxide, sulfur oxide and so on that pollutes the air. It will be the least harmful to gasify or ferment biomass, collect fuel gasses such as hydrogen and methane to generate electricity through fuel cells.

Some believe naively fuel cells are clean generators that do not emit carbon dioxide. Certainly fuel cells themselves do not emit carbon dioxide, but the production of hydrogen from biomass emits carbon dioxide. In order to reduce the emission of carbon dioxide, some try to capture carbon dioxide from power plants and subsequently store it in underground geological formations or deep oceans.

It is doubtful whether this carbon sequestration results in restoration of fossil fuel. We should use more natural and reliable way to restore biomass energy. Two main sources of anthropogenic CO2 emission are combustion of biomass and production of cement. So, storing carbon in living biomass and limestone (calcium carbonate) is preferable.

As for artificial storage of carbon in living biomass, Osaka Gas Co. Ltd. and Tsukuba city developed tri-generation system that applies waste heat and carbon dioxide as the by-product of power generation to growing plants in greenhouses.[10]High CO2 concentration enhances the carbon fertilization of plants with sink organs, such as melon. Such tri-generation has already been put to practical use in Holland.

As for artificial storage of carbon in limestone, it can serve as recycling cement. Used cement is fragile and has quality problems. Jun Iizuka proposes a method of supplying high-pressure CO2 to waste cement powder, abstracting calcium from it by carbonic acid, and producing pure calcium carbonate.[11]

Another way to prolong carbon sequestration is to encourage construction of wooden houses. It not only stores carbon for a long time, it reduces the usage of cement, thus reducing the emission of carbon dioxide. When wooden houses are pull down, the waste wood becomes biomass fuel and reduces consumption of fossil fuel.

You might be afraid that encouraging construction of wooden houses would exhaust forest resources, but managed forestry is sustainable. A tree, once grown up, does not sink much carbon dioxide. Forest causes a fire to replace the old with the new. Because a forest fire is wasteful, we should make the most of mature wood resources.

In this page, I presented my proposal for sustainability. Let me sum up the proposal.

  1. To make human civilization sustainable, we must reduce population first of all. The coming knowledge-intensive economy makes simple labor unnecessary. We should reduce childbirth on one hand and increase educational investment per capita on the other.
  2. To stop desertification, we should substitute the organic agriculture for the modern agriculture, eating the marine animal for eating the terrestrial animal, and reduce human excrement to the ground as manure, thus forming sustainable circulation of nutrients.
  3. If we succeed in reducing world population and greening desert, we can utilize biomass as fuel. If the production of biomass by plants and its consumption by animals keep the balance, our economy becomes sustainable and carbon neutral.

If human civilization remains thousands of years hence, the terraforming of another planet and the permanent self-sufficient human habitation of locations outside Earth will be possible. Before having such a dream, we should first solve the imminent problems of the resources and the environment so as to avoid the extinction of human species.

4 : References

  1. United Nations (1999) The World at Six Billion.
  2. Top 20 countries with lowest total fertility rate are Hong Kong, Macau, Singapore, Taiwan, Lithuania, Northern Mariana Islands, Czech Republic, Belarus, Japan, Bosnia and Herzegovina, Ukraine, Moldova, Slovenia, Poland, Latvia, South Korea, Spain, Italy, Andorra, Slovakia; while top 20 countries with highest total fertility rate are Mali, Niger, Uganda, Somalia, Afghanistan, Yemen, Burundi, Burkina Faso, Congo, Angola, Sierra Leone, Congo, Liberia, Mauritania, Guinea, Malawi, Oman, Mayotte, Gaza Strip, Chad in this order. Data from CIA (2007) Rank order of total fertility rate, The World Factbook 2007.
  3. Center for Global Geography Education (2007) Population Module, Lesson 3.
  4. Halpern CT, Joyner K, Udry JR, Suchindran C. (2000) Smart teens don’t have sex (or kiss much either), The Journal of adolescent health, the Society for Adolescent Medicine, 26(3), pp. 213-25.
  5. Lester C. Thurow (2003) Fortune Favors the Bold: What We Must Do to Build a New and Lasting Global Prosperity, p.170.
  6. United States Department of Agriculture (2007) Glossary of Biotechnology Terms
  7. New Farm Field Trials (2003) Organic farming sequesters atmospheric carbon and nutrients in soils – White paper, organic farming sequesters atmospheric carbon.
  8. Joseph Jenkins (2005) The Humanure Handbook – A Guide to Composting Human Manure, 3rd edition.
  9. Seiwa Denko (2007) Bio-Lux.
  10. Osaka Gas (2004) Contributing to Environmental Conservation Locally, Nationally and Overseas, p.4.
  11. Jun Iizuka (2002) 廃セメントを用いた二酸化炭素排出量削減プロセス. Tokyo University, Department of Environment systems.

Notes

Posted by Nagai Toshiya