9月 041997
 

様相論理学に対する従来のアプローチは不十分である。本節では、確定性の二値論理学から不確定性の多値論理学(確率論的論理学)への移行に向けて、記号論理学の確率論への還元、即ち論理の数理への還元を試みる。

image

不確定性概念と論理学的厳密性は相いれないものではない。しかるに従来の記号論理学は原則として二値論理学であり、真と偽の間にある不確定性の領域を扱う多値論理学ではない。これまでの記号論理学を前提にして様相論理学を試みても、せいぜい3値論理学しか可能にならない(いやそれすら怪しい)のではないかと思われる。真と偽の間にある無限の値を扱おうとするならば、高階の様相記号を付け加える従来のやり方では不十分であり、一階の論理学を抜本的に改革する必要がある。

論理と数理をどう関係付けるかをめぐってこれまでに二つの立場があった。一つはブールに代表される、論理を数理の一部と考える論理代数学の立場で、もうひとつは、現在主流となっている記号論理学の立場、つまりフレーゲに代表される、数理を論理の一部と考える数学基礎論の立場であるが、数理と論理のどちらか一方によって他方を基礎付けるという課題に対しては、そのどちらも成功を収めていないというのが通説である。本節の試みは、立場としてはブール代数と同じであるが、その内容に関しては、以下が示すように、異なる展開となる[b]。

[b] ブ-ルは“かつ and”や“または or”を加法演算“+”に、“除く except”を減法演算“-”に対応させる。「もしxが人間を表し、yがアジア人、つまりアジアの人間を表しているとするならば、“アジア人を除く全ての人間”という概念は、x-yで表現される」[Boole: An Investigation of the Laws of Thought, p.34] 。しかし“アジア人を除く全ての人間”は“人間であってかつアジア人ではないもの”と解釈して、x(1-y)と表現されるべきである。また、“xまたはy”を“x+y”としては、xとyが排反事象でないときに問題が生じる。xの否定を“1-x”と表現すること以外ではブ-ルに同意できない。

命題は真理値を持つ。記号論理学(symbolic logic 象徴的論理学)では、しばしば真は1、偽は0で「象徴的」に表記される。この1と0をたんなる象徴(記号)としてではなく、確率を表現する数字として理解すること、これが確率論的論理学の出発点である。

命題が真であるということは、確率1で妥当するということであり、偽であるということは確率0で妥当するということである。そして0と1の間にある無限個の値も真理値であることとする。命題を命題結合子で合成した複合命題は要素命題の真理値を独立変数とした真理関数であるから、複合命題の真理値は要素命題の真理値から計算されるはずである。問題はその計算方法である。

著名なポーランドの論理学者、ルカシェウィッツは、すでに0と1の間に無限個ある確率を扱う多値論理学を提唱している。彼の立てた演算規則とその結果は表1のようなものである [Lukasiewicz: Philosophical Remarks on Many-valued Systems of Propositional Logic, p.166] 。

表1 ルカシェウィッツの多値論理学の演算規則

Cpq=1 (p≦qのとき)

Cpq=1-p+q (p>qのとき)

Np=1-p

ルカシェウィッツの多値論理学の関数の真理表
Cpqq=0q=0.5q=1Npq なし
p=0111p=01
p=0.50.511p=0.50.5
p=100.51p=10

Cは条件(含意)を、Nは否定を表す。否定が1-pであるというのはいいとしても、条件の計算の仕方は不可解である。連言は条件と否定によって、 EKpqNCpNq つまり p∧q ⇔ ¬(p→¬q)と定義されるので、ルカシェウィッツの演算では、“pかつq”は

Kpq=0 (p≦1-qのとき)

Kpq=p+q-1(p>1-qのとき)

と定義されることになるが、これは積事象の確率計算ではない。ルカシェウィッツの失敗の原因は、確率計算が最も難しい条件(含意)の定義から始めたところにある。むしろ否定と連言あるいは選言を、余事象と積事象あるいは和事象の確率計算を用いてまず定義し、しかる後に条件や双条件を定義すればよいのである。

かくして複合命題の真理値の計算の仕方は、次のようになる (p,q は、0≦p≦1,0≦q≦1 を満たす実数)。

(1) 否定 : ¬p = 1-p

(2) 連言 : p∧q = pq

(3) 選言 : p∨q = p+q-pq

(4) 条件 : p→q = 1-p+pq

(5) 双条件 : p⇔q = 2pq-p-q+1

なお表記法に関して、結合子を3つ以上用いるときの結び付きの強さをこの順とし、そうではないときにのみ括弧を用いることにする。

真理値の計算に際しては、(2) の連言に関してあらかじめ注意を喚起しておかなければならない。p∧pはp2であるが、p∧pとは要するにpと同じことである(反復律)。一般にいって、p∧p∧p∧p∧ …=pはpと同じであるから、

=p

p(pn-1-1)=0

p(p-1)(pn-2+pn-3+pn-4+ … +1)=0

ということになり、pは0か1の値しか取れなくなってしまう。しかしここでは、ブールがそう考えたように[b]、「p=p」をpの値を制約する式としてではなく、論理計算上の規約としておく。

[b] 「論理学の文字記号は、x2=x と表現される法則に普遍的に服従する。数記号のうち、この法則を満たすものは0と1の二つしかない」[Boole: An Investigation of the Laws of Thought, p.46-47] 。

「p=p」は、決して「さいころを1回投げて1の目が出る確率」=「さいころを2回投げて1の目が2回出る確率」=「さいころを3回投げて1の目が3回出る確率」… =1/6 ということを言っているわけではない。p∧pは「1回目に1が出る」かつ「1回目に1が出る」ということであり、たんに「1回目に1が出る」という命題と言っていることは変わらない。「1回目に1が出る」かつ「2回目に1が出る」は、同じ「1が出る」という事象の連言であっても、二つの事象は時空的に区別されうる試行の結果なのでp∧qと表記されるべきであり、p∧pと表現されるべきではない。このように考えれば、p=pという約束は、確率論的多値論理学を禁止する規則ではないということが理解できる。

連言に関するもう一つの注意は、pとqが、確率0ではない排反事象であるとき、p∧qはpqではなく、0になるということである。(3),(4),(5)に現れる積pqの計算に関しても同様である。すなわち、

P(p∨q)=p+q ⇔ (∀p)(∀q)(pq=0)

今、箱にりんご2つとみかん3つが入っているとする。箱から一つの個体を取り出すとき、それがりんごである確率は2/5であり、みかんである確率は3/5である。しかし「りんごかつみかん」である確率は、2/5×3/5=6/25ではなく、0である。もっとも「りんごかつみかん」の存在確率が0であることはアプリオリには判断不可能であって、バイオテクノロジーの発達に伴って「りんごかつみかん」がありふれた存在になる可能的世界を想像することはできる。ともあれ複数の事象が背反(同時に起こり得ない)かどうかは、経験的問題であって、そのつど考察するしかない。なお二値論理学の範囲内においては、p∧q=pqと計算して差し支えない。

この二つの点を予め断った上で、恒真式の証明を代数計算によって行うことしよう。恒真式とは、要素命題がいかなる真理値を取ったとしてもそれには係わらず、つまり分析的に真となる式のことである。恒真式の中でも基本的で活用範囲が広いものは、定理の名に値する。やや長くなるけれども、以下主な定理の証明を行う。

定理1(同一律): p⇔p

2p2-p-p+1=2p-2p+1=1

双条件(⇔)は、二つの命題が必要十分条件の関係にあることを示す結合子で、定理によく用いられる。この同一律の定理から、p⇔qという形式を取る定理を証明する時には、2pq-p-q+1を計算しなくても、左辺と右辺の等値(同形性)を示すだけでよいことが分かる。

定理2(矛盾律): ¬(p∧¬p)

1-p(1-p)=1-p+p2=1-p+p=1

定理3(排中律): p∨¬p

p+(1-p)-p(1-p)=1-2p+2p=1

定理4(二重否定律): ¬¬p ⇔ p

左辺=1-(1-p)=p

定理5(反復律): p∨p ⇔ p

左辺=p+p-p2=p

定理6(付加律): p → p∨q

1-p+p(p+q-pq)=1-p+p+pq-pq=1

定理7(簡約律): p∧q → p

1-pq+pq=1

定理8(結合律): p∨(q∨r)⇔(p∨q)∨r

左辺=p+(q+r-qr)-p(q+r-qr)
=p+q+r-pq-qr-rp+pqr

右辺=(p+q-pq)+r-r(p+q-pq)
=p+q+r-pq-qr-rp+pqr

定理9(結合律):(p⇔(q⇔r))⇔((p⇔q)⇔r)

左辺=p⇔(q⇔r)= 2p(2qr-q-r+1)-p-(2qr-q-r+1)
+1=4pqr-2pq-2qr-2rp+p+q+r

右辺=(p⇔q)⇔r= 2r(2pq-p-q+1)-r-(2pq-p-q+1)
+1=4pqr-2pq-2qr-2rp+p+q+r

定理10(分配律): p∧(q∨r)⇔(p∧q)∨(p∧r)

左辺=p(q+r-qr)=pq+pr-pqr

右辺=pq+pr-pq・pr=pq+pr-pqr

定理11(分配律): p∨(q∧r)⇔(p∨q)∧(p∨r)

左辺=p+qr-pqr

右辺=(p+q-pq)(p+r-pr)=p+pr-pr+pq+qr-pqr
-pq-pqr+pqr=p+qr-pqr

定理12(移出入律):((p∧q)→ r)⇔(p→(q→r))

左辺=1-pq+pqr

右辺=1-p+p(1-q+qr)=1-pq+pqr

定理13(分離律):(p→q)∧p → q

1-p(1-p+pq)+pq(1-p+pq)
=1-p+p-pq+pq-pq+pq=1

伝統的論理学では、定理13 は「肯定式 modus ponens」と呼ばれる。これとよく似た

(p→q)∧¬q→¬p

は「否定式 modusu tollens」と 呼ばれるが、この定理は次の定理と同趣旨である。

定理14(対偶律): p→q ⇔ ¬q→¬p

左辺=p→q=1-p+pq

右辺=¬q→¬p=1-(1-q)+(1-q)(1-p)=1-p+pq

定理15(対偶律):(p⇔q)⇔(¬p⇔¬q)

左辺=2pq-p-q+1

右辺=2(1-p)(1-q)-(1-p)-(1-q)+1=2pq-p-q+1

定理16(背理律): p∧(q∧¬q)→ ¬p

1-pq(1-q)+pq(1-p)(1-q)

=1-pq+pq+pq-pq-pq+pq=1

定理17(両刀律):(p→r)∧(q→r)⇔(p∨q→r)

左辺=(1-p+pr)(1-q+qr)
=1-p-q+pq+qr+rp-pqr

右辺=1-(p+q-pq)+r(p+q-pq)
=1-p-q+pq+qr+rp-pqr

定理18(連言の定義): p∧q ⇔ ¬(¬p∨¬q)

左辺=pq

右辺=1-{(1-p)+(1-q)-(1-p)(1-q)}=
1-1+p-1+q+1-p-q+pq=pq

定理19(連言の定義): p∧q ⇔ ¬(p→¬q)

左辺=pq

右辺=1-{1-p+p(1-q)}=1-1+p-p+pq=pq

定理20(選言の定義): p∨q ⇔ ¬(¬p∧¬q)

左辺=p+q-pq

右辺=1-(1-p)(1-q)=1-1+p+q-pq=p+q-pq

定理18と定理20は、ド・モルガンの法則と呼ばれているものである。

定理21(選言の定義): p∨q ⇔ ¬p→q

左辺=p+q-pq

右辺=1-(1-p)+q(1-p)=1-1+p+q-pq
=p+q-pq

定理22(条件の定義): p→q ⇔ ¬(p∧¬q)

左辺=1-p+pq

右辺=1-p(1-q)=1-p+pq

定理23(条件の定義): p→q ⇔ ¬p∨q

左辺=1-p+pq

右辺=1-p+q-q(1-p)=1-p+q-q+pq
=1-p+pq

定理24(双条件の定義):(p⇔q)⇔(p→q)∧(q→p)

左辺=2pq-p-q+1

右辺=(1-p+pq)(1-q+pq)
=1-q+pq-p+pq-pq+pq-pq+pq=2pq-p-q+1

以上の定理の証明は、もちろん従来の記号論理学が記号論理学なりの方法でやってきたのだから、別段画期的な意味があるわけではない。我々の代数的計算方法の意義は、2値論理の場合のみならず多値論理/様相 論理の場合も同じ演算方法でもって複合式を処理することができる点にある。従来の多値論理学/様相論理学は、例えば次のような問いに答えられたであろうか。

設問:要素命題p,q,rの様相をそれぞれ0.20,0.50,0.80とするとき、複合命題「もしpではないならばqまたはrのときかつその時のみ、qかつr」の様相を求めよ。

複合命題を“¬p→q∨r⇔q∧r”と理解すると、答えは次のようになる。

与式=2pr{1+(1-p)(q+r-qr-1)}-1-(1-p)(q+r-qr-1)-qr+1

=1-p-q-r+pq+pr+2qr-pqr

=1-0.2-0.5-0.8+0.1+0.16+0.8-0.08=0.48

次に命題論理学から述語論理学へ移行することしよう。述語論理学では、0階の個体と1階の普遍との関数関係が表現される。一つ以上の個体変項、例えばx,y,zがある関係(述語)P「xはyにzを与える」を持つ時、その事態は Pxyz と表記される。ちょうどこれまで命題記号pを、その命題の確率を表す変数としても扱ったように、この Pxyzなどの記号も、以下、「xがyにzを与える」確率を表す変数としても使用する。確率 Pxyz は、論議領界における要素x,y,zが取りうる 可能的諸関係の総数を分母とし、Pxyz となる場合を分子とする分数で表される。だから Pxyz は、システムPがおこなう複雑性の縮減を表していると言ってよい。

述語論理学では、主語と述語の外延的包摂関係を表現するために量化子が導入される。

  1. Pxの変項xが普遍量化子によって束縛されると、その命題(∀x)Px は「全てのxはPである」と読まれる。その意味するところは、「論議領界におけるどのxを取ってみてもそれはP」ということであるから、確率論的論理学では、(∀x)Pxは「xがPである確率は1である」と解釈される。すなわち、(∀x)Px ⇔ Px=1
  2. Pxの変項xが 存在量化子によって束縛されると、その命題(∃x)Px は「あるxはPである」と読まれる。その意味するところは、「論議領界における少なくとも一つのxはP」ということであるから、確率論的論理学では、(∃x)Pxは「xがPである確率は0ではない」と解釈される。すなわち(∃x)Px ⇔ Px≠0

量化子と否定との組み合わせから次の定理が得られる。

定理25: ¬(∀x)Px ⇔(∃x)¬Px

左辺 ⇔ Px≠1

右辺 ⇔ 1-Px≠0 ⇔ Px≠1

定理26: ¬(∃x)Px ⇔(∀x)¬Px

左辺 ⇔ Px=0

右辺 ⇔ 1-Px=1 ⇔ Px=0

量化子と連言との組み合わせから次の定理が得られる。

定理27:(∀x)(Px∧Qx)⇔(∀x)Px∧(∀x)Qx

Px×Qx=1 → Px=1∧Qx=1

[∵ 0≦Px≦1∧0≦Qx≦1]

Px=1∧Qx=1 → Px×Qx=1

∴Px×Qx=1 ⇔ Px=1∧Qx=1

定理28:(∃x)(Px∧Qx)→(∃x)Px∧(∃x)Qx

Px×Qx≠0 → Px≠0∧Qx≠0

PxとQxが排反事象であるとき、

Px≠0∧Qx≠0→Px×Qx=0

となるので、逆は成り立たない。

量化子と選言との組み合わせから次の定理が得られる。

定理29:(∃x)Px∨(∃x)Qx ⇔(∃x)(Px∨Qx)

Px=0∧Qx=0 → Px+Qx-Px×Qx=0

Px+Qx-Px×Qx=0 → Px=0∧Qx=0

[∵ Px+Qx-Px×Qx=0 すなわち

Px(1-Qx)+Qx=0 の時、

Px≧0∧1-Qx≧0∧Qx≧0 であるから、

Px(1-Qx)=0∧Qx=0]

∴ Px=0∧Qx=0 ⇔ Px+Qx-Px×Qx=0

¬(∃x)Px∧¬(∃x)Qx ⇔ ¬(∃x)(Px∨Qx)

定理18より、

¬ (∃x)Px∨(∃x)Qx)⇔ ¬(∃x)(Px∨Qx)

定理15より、

(∃x)Px∨(∃x)Qx ⇔(∃x)(Px∨Qx)

定理30:(∀x)Px∨(∀x)Qx →(∀x)(Px∨Qx)

Px=1のとき、Px+Qx-Px×Qx=1-Qx+Qx=1

Qx=1のとき、Px+Qx-Px×Qx=Px+1-Px=1

この二つと定理17より、

Px=1∨Qx=1 → Px+Qx-Px×Qx=1

逆は成り立たない。なぜならば、例えば Px=0.5∧Qx=0.5

で両者が排反事象であるとき、

Px+Qx-Px×Qx=1 → ¬(Px=1∨Qx=1)

定理31:(∀x)(Px∨Qx)→(∀x)Px∨(∃x)Qx

Px≠1∧Qx=0 のとき、

Px+Qx-Px×Qx=Px+Qx(1-Px)≠1

¬(∀x)Px∧¬(∃x)Qx → ¬(∀x)(Px∨Qx)

定理18より、

¬ (∀x)(Px∨(∃x)Qx)→ ¬(∀x)(Px∨Qx)

定理14より、

(∀x)(Px∨Qx)→(∀x)Px∨(∃x)Qx

逆は成り立たない。例えば、Qx=0.5∧Px=0のとき、

Px+Qx-Px×Qx=0.5≠1

量化子と条件との組み合わせから次の定理が得られる。

定理32:(∃x)(Px→Qx)⇔(∀x)Px→(∃x)Qx

1-Px+Px×Qx≠0

Px(1-Qx)≠1

Px=1の時、1-Qx≠1

Qx≠0

∴ 1-Px+Px×Qx≠0∧Px=1→Qx≠1

定理12より、1-Px+Px×Qx≠0 →(Px=1→Qx≠1)

定理22より、Px=1→Qx≠1 ⇔ ¬(Px=1∧Qx=0)のとき

1-Px+Px×Qx≠1-1+1×0=0

∴(Px=1→Qx≠1)→ 1-Px+Px×Qx≠0

1-Px+Px×Qx≠0 ⇔ Px=1→Qx≠1

定理33: (∃x)(Px→(∀x)Qx)→(∀x)(Px→Qx)

定理23より、

Px≠0→Qx=1⇔ Px=0∨Qx=1

Px=0の時、1-Px+Px×Qx=1

Qx=1の時、1-Px+Px×Qx=1

この二つと定理17より、

Px=0∨Qx=1→1-Px+Px×Qx=1

逆は成り立たない。なぜなら、例えば Px=Qx=0.5 のとき Pxと1-Qxは排反事象で、Px(1-Qx)=0

∴ 1-Px+Px×Qx=1 → ¬(Px=0∨Qx=1)

⇔ ¬(Px≠0→Qx=1)

定理34: (∀x)(Px→(∀x)Qx)→(∃x)(Px→Qx)

1-Px+Px×Qx=0 → Px(1-Qx)=1

⇔ Px=1∧Qx=0 → Px=1∧Qx≠1

定理14より、¬(Px=1∧Qx≠1)→ 1-Px+Px×Qx≠0

定理19より、(Px=1→Qx=1)→ 1-Px+Px×Qx≠0

逆は成り立たない。1-Px+Px×Qx≠0のとき、

例えば Px=1∧Qx=0.5 であることが可能であるが、

その時、Px=1∧Qx≠1 ⇔ ¬(Px=1→Qx=1)

定理35: (∃x)(Px→(∃x)Qx)→(∃x)(Px→Qx)

1-Px+Px×Qx=0 → Px(1-Qx)=1

⇔ Px=1∧Qx=0 → Px≠0∧Qx=0

定理14より、¬(Px≠0∧Qx=0)→ 1-Px+Px×Qx≠0

定理19より、(Px≠0→Qx≠0)→1-Px+Px×Qx≠0

逆は成り立たない。1-Px+Px×Qx≠0のとき、

例えば Px=0.5∧Qx=0 であることが可能であるが、

その時、Px≠0∧Qx=0 ⇔ ¬(Px≠0→Qx≠0)

以上、単項述語のみを取り上げて述語論理学の展開を行った。では多項述語の場合はどう処理すればよいか。例えば、2項述語“Lxy”「xはyを愛する」を考えてみよう。xとyの論議領界を、それぞれ、あるパーティーに出席した少年と少女とする。量化子の組み合わせから、次の6つのケースを区別することができる。

(1) (∀x)(∀y)Lxy

“All the boys love all the girls.”

「全ての少年は全ての少女を愛する。」

(2) (∀x)(∃y)Lxy

“All the boys love some girls.”

「全ての少年はある少女を愛する。」

(3) (∃y)(∀x)Lxy

“Some girls are loved by all the boys.”

「全ての少年から愛される少女がいる。」

(4) (∀y)(∃x)Lxy

“All the girls are loved by some boys.”

「全ての少女はある少年から愛される。」

(5) (∃x)(∀y)Lxy

“Some boys love all the girls.”

「全ての少女を愛する少年がいる。」

(6) (∃x)(∃y)Lxy

“Some boys love some girls.”

「ある少女を愛する少年がいる。」

(2)と(3),あるいは(4)と(5)のように、存在量化子と普遍量化子の順序を替えると、命題の意味が変わるというのがフレ-ゲの『概念記法』以来の定説である。すなわち(2)は、気に入った少女がいない少年は一人もいないと言っているに過ぎないのに対して、(3)は全ての少年が愛するような人気のある少女の存在を主張している。だから(3)は(2)を含意するが、(2)は(3)を含意しない。同様に、(5)は(4)を含意するが、(4)は(5)を含意しない。

このような区別を設けることは恣意的であるようにも思えるのだが、あえて(1)から(6)までを、相互に区別がつくように、確率で表すと、以下のようになる。ただし、xとyは変数を、bとcはxに属する定数を、gとhはyに属する定数を表すとする。

(1) P(Lxy)=1

(2) P(Lxg)=1

(3) P(Lxg∧Lxh→(g⇔h))=1

(4) P(Lby)=1

(5) P(Lby∧Lcy→(b⇔c))=1

(6) P(Lxy)≠0

以上本節では、論理学の確率論への還元を試みた。システム論の中枢的な概念である《複雑性の縮減》も《複数の可能性の中からの選択》であるから、確率論的な概念である。本書では十分に展開できないけれども、確率論を中心にすれば、システム論の論理学を展開できるはずである。

このページをフォローする
私が書いた本

  13 コメント

  1. 私も独自の無限多値論理を考えてみました。

  2. pとqが独立でない命題の場合、例えば、pを「aはみかんである」、qを「aはなつみかんである」とすると、この記事にある計算規則に従えば p∧qの真理値はpqとなりそうですが、それでいいのでしょうか?

  3. 「みかんである」確率が p で、それがなつみかんである種差を持つ条件付き確率を r とすると、「a はなつみかんである」確率 q は pr となります。すると、「a はみかんである」かつ「a はなつみかんである」は、ppr となり、反復律 pp=p により、pq=ppr=pr=q となります。

  4. 要素命題はすべて互いに独立という仮定を置いているのでしょうか?いまの例でいうと、p, rは要素命題かもしれないが、qは要素命題でない、という感じで考えておられるのでしょうか?
    というか、なぜ最初から確率空間を使わないでしょうか?わざわざ多値論理に言及する理由がよく分からないです。この記事で提案されているシステムは、結合子に対する解釈が真理関数的でないですよね。

  5. 要素命題はすべて互いに独立という仮定を置いているのでしょうか?いまの例でいうと、p, rは要素命題かもしれないが、qは要素命題でない、という感じで考えておられるのでしょうか?

    何が要素命題(原子命題)で何が複合命題(分子命題)かは相対的な問題にすぎません。「Xはみかんである」という要素命題は、「Xは被子植物の果実であり、かつ黄色い果皮で覆われ、かつ果皮内に多数の房があり、かつ云々」という複合命題に書き換えることもできます。また、要素命題であるかどうかと独立であるかどうかは関係がありません。

    というか、なぜ最初から確率空間を使わないでしょうか?わざわざ多値論理に言及する理由がよく分からないです。

    私の狙いは、従来の多値論理学や様相論理学に対する新しいアプローチを提案するところにあります。

    この記事で提案されているシステムは、結合子に対する解釈が真理関数的でないですよね。

    解釈が「真理関数的でない」ではなくて「二値論理的ではない」と考えてください。そしてそれが私の狙いなのです。

  6. 要素命題であるかどうかと独立であるかどうかは関係がありません

    だとすると、φとψが要素命題でありながら互いに独立でないケースでφ∧ψの「真理値」をどうやって計算するのか、というのが私のもともとの質問の意図だったのですが。「条件付き確率」という道具立てを持ち込んでいましたが、少なくともそれは上の記事では導入されてはいませんでした。それで私が思ったのは、結局そういうことをするなら普通の確率論でよいのではないかという疑問だったのですが。

    解釈が「真理関数的でない」ではなくて「二値論理的ではない」と考えてください。

    何を否定されているのかが全く分からないです。pの「真理値」とqの真理値が同じであっても、p∧pの値とp∧qの値が食い違いうるというのなら、そのような結合子の解釈は真理関数的でないということではないでしょうか?こう言うときに、私は別に「真理値」は0か1のどちらかであるという前提を持ち込んでいるわけではありません。既存の多値論理はほとんどがみなこの意味で真理関数的だと思います。上の記事で永井さんが取り上げているLukasiewiczのものもそうです。

    Lukasiewiczといえば、上の記事における批判はかなりアンフェアという印象です。例えば「連言は条件と否定によって、 EKpqNCpNq つまり p∧q ⇔ ¬(p→¬q)と定義される」とありますが、それは古典論理ではそうというだけで、これが成り立たない非古典論理はいくらでもあると思います。Lukasiewiczのもそうですし、直観主義論理などでも成り立たないと思います。そもそもLukasiewiczが多値論理を提案したときには確率論のことなんて考えていなくて、嘘つきとかを問題にしていたのではないかと・・・。

  7. 何を否定されているのかが全く分からないです。

    そう否定的に考えずに、もっと肯定的な気持ちで受け取ってくださいというつもりで書きました。関数においては、変数が決まればその値が確定的に決まります。そうでなければその値は偽だから、二値論理的です。では、確定的でない場合、確定的でない、二値論理的でないからといって、論理学の対象から外してよいのかというのが、不確定性の論理学を提唱している私の問題意識です。真理関数的なアプローチで多値論理学を確立しようとする従来の論理学者たちの試みは、喩えるならば、多体問題を解析力学的に解決しようとか、量子的不確定性を古典力学的に解釈しようとするような試みと同じで、古いパラダイムの限界を古いパラダイムに基づいて解決しようとする試みです。古いパラダイムの限界は、新しいパラダイムに基づいて解決されなければなりません。もとより、新しい理論は古い理論を包摂する普遍性を持たなければなりません。私の確率論的論理学でも、真理値が 1 or 0 の時、p∧p の値と p∧q の値が同じになるのだから、古い理論を包摂していると言うことができます。

    そもそもLukasiewiczが多値論理を提案したときには確率論のことなんて考えていなくて、嘘つきとかを問題にしていたのではないかと・・・。

    「確率論のことなんて考えていな」かったからこそ、私が確率論的な解釈を提示しているのです。ところで「嘘つきとかを問題にしていた」とは何のことですか。クレタ人のパラドックスのことですか。

    PS 引用する時は、以下のコードを使ってください。

    <blockquote>ここに引用する文章をコピペする</blockquote>

  8. 関数においては、変数が決まればその値が確定的に決まります。そうでなければその値は偽だから、二値論理的です。では、確定的でない場合、確定的でない、二値論理的でないからといって、論理学の対象から外してよいのかというのが、不確定性の論理学を提唱している私の問題意識です。

    あまり自信ないのですが、ひょっとすると永井さんはLukasiewiczの多値論理も「二値論理的」というお考えなのでしょうか?だとすれば、この「二値論理的」の用法はかなり非標準的ではないでしょうか。

    新しい理論は古い理論を包摂する普遍性を持たなければなりません。私の確率論的論理学でも、真理値が 1 or 0 の時、p∧p の値と p∧q の値が同じになるのだから、古い理論を包摂していると言うことができます。

    まぁその点だけでいえば、Lukasiewiczの多値論理も真理値が古典的(1 or 0)な場合には、古典論理と同じ結果が得られると思いますが…。

    「確率論のことなんて考えていな」かったからこそ、私が確率論的な解釈を提示しているのです。

    Lukasiewiczが確率論のことなんて考えていなかった、のポイントは、上の記事はLukasiewicz批判としてはアンフェアではないか、という点にかけたつもりだったのですが。ですが、永井さんとしては別にLukasiewiczを批判するつもりはない、ということでしょうか?

    「嘘つきとかを問題にしていた」とは何のことですか。クレタ人のパラドックスのことですか。

    あ、そうです。すみません、ちょっと省略しすぎました。。。

  9. あまり自信ないのですが、ひょっとすると永井さんはLukasiewiczの多値論理も「二値論理的」というお考えなのでしょうか?だとすれば、この「二値論理的」の用法はかなり非標準的ではないでしょうか。

    不確定性の論理学は確定性の論理学を越えようとしているのですから、確定性の論理学において標準的かどうかは不確定性の論理学にとっては重要ではありません。

    まぁその点だけでいえば、Lukasiewiczの多値論理も真理値が古典的(1 or 0)な場合には、古典論理と同じ結果が得られると思いますが…。

    それはそもそも Jan Łukasiewicz を批判する文脈で書いていません。二値論理との整合性はたんに必要条件に過ぎません。

    Lukasiewiczといえば、上の記事における批判はかなりアンフェアという印象です。例えば「連言は条件と否定によって、 EKpqNCpNq つまり p∧q ⇔ ¬(p→¬q)と定義される」とありますが、それは古典論理ではそうというだけで、これが成り立たない非古典論理はいくらでもあると思います。

    前回この件にはコメントしませんでした。OfSkinerrian さんがこう書くことで何を批判しようとしているのかわからなかったからです。私が本文において書いたことは「条件の計算の仕方は不可解で」あるということであり、条件の計算の仕方が不可解である以上、その条件と否定によって定義された連言の定義も受け入れられないということなのです。そこで「不可解」と書いたのは、条件の定義であって、連言の定義ではありません。

    なお、クレタ人のパラドックスに関しては、「確率の認識と認識の確率」をご覧ください。

  10. 私が本文において書いたことは「条件の計算の仕方は不可解で」あるということであり、条件の計算の仕方が不可解である以上、その条件と否定によって定義された連言の定義も受け入れられないということなのです。そこで「不可解」と書いたのは、条件の定義であって、連言の定義ではありません。

    なるほど、私の方にいくらか不注意があったようですね。最初に上の記事を読んだ印象では、条件の計算の仕方は不可解だ、なぜなら、連言は条件と否定によって定義されるべきなのだが、それは積事象の確率になっていないからだ、という趣旨の議論を立てているのかと思ったので、上のようなコメントを書きました。条件の計算の仕方は不可解、というところで切れているのですね。
    まず、私自身は、Łukasiewiczの条件文の真理値計算の仕方がそうもあっさり「不可解」と言いきれるとは思っていません。基本的なアイデアは、前件から後件への移行において真理の度合いがどのくらい保存されているのかを示している、というものだと思います。例えば、「1万粒の砂の集まりは砂山である」と「9,999粒の砂の集まりは砂山である」から条件文を作ったとします。前者の真理値を1、後者の真理値を0.99とすると、条件文の真理値は0.99、とかそんな感じでしょうか。
    あと、連言は条件と否定によって定義される、という部分を私は永井さんがŁukasiewiczを批判するために勝手に前提していると思ったのですが、そうではなくてŁukasiewicz自身がそういう風に定義している、ということなのでしょうか?だとしたら大変失礼しました。連言の真理値計算には、p∧q = min{p, q} というタイプと p&q = max{0, p+q-1} というタイプの二種類があるようでして、そして私は前者の方しか考えてなかったので、その意味での連言は¬(p→¬q)では定義できない、と書いたのでした。

    ところで、上の記事には他にも疑問なところがありまして

    これまでの記号論理学を前提にして様相論理学を試みても、せいぜい3値論理学しか可能にならない(いやそれすら怪しい)のではないかと思われる。

    「様相論理」ということで「必然的である」とか「可能である」といった様相表現を扱う論理学のことを念頭におかれているのであれば、この箇所は撤回した方がよいのではないでしょうか?論理学者たちはクリプキ意味論をふつうに使っているわけですし…。

  11. 私自身は、Łukasiewiczの条件文の真理値計算の仕方がそうもあっさり「不可解」と言いきれるとは思っていません。

    例えば、p の真理値が 0.4 で、q の真理値が 0.6 とします。Łukasiewicz の演算規則に従うなら、Cpq=1 となります。しかし、p が真で、q が偽である可能性が排除できないのに、Cpq=1 と言い切ってよいのかという疑問が残ります。

    連言は条件と否定によって定義される、という部分を私は永井さんがŁukasiewiczを批判するために勝手に前提していると思ったのですが、そうではなくてŁukasiewicz自身がそういう風に定義している、ということなのでしょうか?

    そうです。EKpqNCpNq は、Łukasiewicz による定義です。OfSkinerrian さんのように読むことは想定していなかったので、電子書籍版では、誤解を招かないように書き改めることにしたいと思います。

    「様相論理」ということで「必然的である」とか「可能である」といった様相表現を扱う論理学のことを念頭におかれているのであれば、この箇所は撤回した方がよいのではないでしょうか?

    それを書いた時、私の念頭にあったのは、Clarence Irving Lewis の様相論理学です。Saul Aaron Kripke に関してはまた別途論じたいと思います。

  12. 例えば、p の真理値が 0.4 で、q の真理値が 0.6 とします。Łukasiewicz の演算規則に従うなら、Cpq=1 となります。しかし、p が真で、q が偽である可能性が排除できないのに、Cpq=1 と言い切ってよいのかという疑問が残ります。

    その疑問は、実質含意のパラドクスと似ているような気がします。後件の真理度が大きいだけで条件文の真理度が1になるのならば、条件文の前件と後件の間にあるべき関連性を捉えられていない、という感じでしょうか。それを「不可解」と言うのは、まぁアリといえばアリかなとは思いますが、その言い分を認めてしまうと、古典論理の実質含意もまた「不可解」として退けられることになりそうです。

    それを書いた時、私の念頭にあったのは、Clarence Irving Lewis の様相論理学です。

    C.I.ルイスは様相論理の公理と推論規則を定式化しただけで意味論は提案してないと思うので、このコメントは意外でした。たしか、Łukasiewiczは彼の多値論理の意味論を使って、様相オペレータに関する規則を □p = 1-min{1, 2-2p}, ◇p = min{1, 2p} としていたので、これが念頭にあるのかと思いました。いずれにせよ、現代の論理学者で多値論理を使って様相論理の意味論を与えようとする人はまずいないと思われます。

    あと、上の記事に関するまた別の疑問は、ブール代数に言及している箇所にある

    “xまたはy”を“x+y”としては、xとyが排反事象でないときに問題が生じる。

    といったコメントです。ブール代数をクラスに関する代数として解釈するなら、”x+y” はx∪yという和集合として理解されるでしょうから、排反であろうとなかろうと問題は生じないように思います。

  13. その疑問は、実質含意のパラドクスと似ているような気がします。後件の真理度が大きいだけで条件文の真理度が1になるのならば、条件文の前件と後件の間にあるべき関連性を捉えられていない、という感じでしょうか。

    それは違います。前件と後件との間に何の関連性も要求せず、前件が偽なら後件が何であれ条件法が真になると認めた上でも、私が指摘した問題は成り立つからです。

    現代の論理学者で多値論理を使って様相論理の意味論を与えようとする人はまずいないと思われます。

    いないからこそ、私がそれをやろうとしたのです。量化も様相も多値も、すべて確率論的論理学で同様に扱うのが私の戦略です。

    ブール代数をクラスに関する代数として解釈するなら、”x+y” はx∪yという和集合として理解されるでしょうから、排反であろうとなかろうと問題は生じないように思います。

    “∪”の意味で“+”を用いるのなら、わざわざ数学的な演算記号を使う意味がありません。

 返信する

以下のHTML タグと属性が利用できます: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

/* ]]> */